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Supplementary Figure 1: a) Workflow and representative FACS images. 

  



Supplementary Figure 2: a) Horizonal integration with WNN of all lymphoid/myeloid datasets. 2D 

representation of the reference dimensions indicate the different annotated cell types. b) Bar plot of cell 

types across datasets. c) Violin plots of data quality across datasets. d) Comparison of annotated cell 
types in individual datastes. e) Gene expression of marker genes in the full integrated dataset. 

  



Supplementary Figure 3: a-b) Validation of the MNN (a) and rPCA(b) integration.  

  



Supplementary Figure 4: a) Copy-number alterations based on single cell data. Only a small subset 

of tumor cells was found in the OPC cluster. b) Spatial correlation plots indicate the spatial overlap of T 

cell exhaustion (y-axis) and CCL2 (green, R2=0.87, padj.<0.05) and IFN-gamma (red R2=0.63, 
padj.<0.05) response. c) Spatial correlation plots indicate the spatial overlap of HMOX1 expression (y-

axis) and the mesenchymal subgroup (R2=0.72, padj.<0.05) 

  



Supplementary Figure 5: a-b) Cluster of myeloid cells. The cells are isolated from the reference cell 
type annotation map and processed by MNN integration followed by SNN clustering. The number of 

clusters are determined by the optimal cluster stability using cluster-trees. c) Illustration of an expression 

heatmap of the top 5 marker genes of each cluster.  

  



Supplementary Figure 6: a) Kaplan-Meier survival estimation of HMOX1 high/low expression GBM. b-

c) Expression of HMOX1 in different regions of the tumor (b) and in de-novo and recurrent stage (c). P-

values are determined by one-way ANOVA (b), one-sided T test (c) and log-rank statistics (a). 

  



SUPPLEMENTARY Methods 

 

 

1. Nearest Functional Connected Neighbors (NFCN) 
1.1. Background of the NFCN development  

Over the recent years, several algorithms have been developed to infer cellular connections based on 

receptor ligand expression profiles. These algorithms allow us to predict potential cellular interactions 

from single cell transcriptomic data, the most common being CellPhoneDB1, NicheNet2 and CellChat3. 

Both algorithms require previously annotated clusters, using the resulting cell populations to infer 

connectivity. These algorithms are highly recommended for de-novo exploration of data but lack 

accuracy when defined signaling pathways across cell populations are explored. In the context of our 

investigation, we aimed to develop an unsupervised algorithm that can predict the cellular interactions 

of a target and source population, without prior cluster annotations. Our novel NFCN algorithm 

(NFCN2) is tailored to predict cell pairs that are most likely to be connected. These predicted cellular 

interactions are further corrected using spatially resolved transcriptomics and physically interacting 

cell-seq (PIC-seq).  

NFCN2 can be seen as supplementary to CellPhoneDB and CellChat, where the inferred Cell-Cell 

interactions are further validated. In the current version, CellChat is implemented as the first step of 

the algorithm, which opens up the possibility to combine de-novo exploration and validation within 

the NFCN pipeline. To ensure compatibility with existing workflows, we use Seurat objects as a 

common S4-object format. The output from the NFCN workflow is stored as an “assay” in the S4 Seurat 

object. 



Supplementary Figure 7 

1.2. NFCN Step1: Cell signaling annotation with CellChat 

In the first step, we identify signaling pathways that define the up/downstream activation of any given 

Receptor-Ligand (R-L) interaction. The analysis is open to all R-L pairs that are present in the CellChat 

database. This can be accessed using: CellChat::CellChatDB.human 

 

 

We define the following parameters from cells within the target population:  

1. Expression of the ligand gene(s):  
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where cells are defined as 
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2. The downstream activation signal:  
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where K is the kernel and 0.7 > h > 0.3 is used to adjust the estimator. 𝑆 defines the gene set 

enrichment score of the defined pathway. The gene sets are dynamically created based on the R-L 

input. For this dynamic adaptation, all signaling pathways that are linked to both the ligand and the 

receptor gene are used. The gene sets were then consolidated to identify uniquely expressed genes 

that take part in either downstream or upstream signaling. This de-novo assembled gene sets are then 

used to compute the signal activity. Enrichment scores are calculated using singular value 

decomposition (SVD) over individual genes within the gene set, and the coefficients of the first right-

singular vector define the enrichment.  



3. Expression of the receptor gene(s): 
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whereby cells are defined as 
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4. The downstream activation signal: 
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Similar estimation of gene set enrichment scores as illustrated in (2). 

1.3. NFCN Step2: Fitting the model for cell-cell connectivity 

We first integrate both source and target data after normalization (5) of both input vectors (6 and 7). 
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(6)		𝐸𝑋𝑃 = 𝐿!"##! + (2 − 𝑅!"##") and (7)	𝑆𝐼𝐺 = 𝑆!"##! + (2 − 𝑆!"##") 

A kernel regression was then used for non-parametric estimation of the connected cells from the 

target and source dataset4 (8). 
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where ℎ is the bandwidth parameter that controls the resolution of the kernel estimation, which was 

optimized for each L-R pair. We then estimate the cells that are most likely to be connected by 

reassembling based on the connectivity coefficient (9):  
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The upper .95 quantile from both the source and target population are then defined as connected 

cells. 

 

1.4. NFCN Step3: Correction of connected cells using stRNA-seq 

Our model estimates the likelihood of cellular interactions between a source and target population. 

Without a spatial context, the likelihood of this being a physical interaction needs to be further 

validated. Therefore, we made use of a spatially resolved transcriptomics (stRNA-seq) dataset, to 

which we project both the connected and non-connected cell populations. Differentially expressed 

genes between connected and non-connected cells were determined and used as a basis to locate the 

spatial positions of the cell populations in the stRNA-seq dataset using the spotlight algorithm. 

Additionally, this integration of stRNA-seq datasets opens up the possibility to determine spatial 



correlations between other cell types or states. The most likely position of each cell (Of the connected 

cell populations) was then estimated based on the top expressed genes (n=100) using  

NFCN2::inferSpatialCorrection(object, inferSpatialPosition.object, assay="SCT", estimator=1, 

nr.genes=100). 

The algorithm finally corrects the connected cell pairs based on their likely juxtaposition in space using  

NFCN2::inferSpatialPosition(object, spata.obj, correction.distance = 100)). 

The distance between the connected cells can be adjusted based on the type of interaction, with long 

distance cytokine interactions (Recommended: 100 µm) or surface marker interactions 

(Recommended: 50µm).  

 

1.5. NFCN Step4: Correction based on PIC-seq 

Recently, the development of PIC-seq has enabled the identification of connected cells based on 

physical interactions. In the presented method, doublet cell pairs were identified using fluorescence 

activated cell sorting (FACS) and further sequenced. Here, we use an adapted variant that makes use 

of the normally rejected doublets from our scRNA-seq dataset. These identified doublets can contain 

a variety of cell types; cells of the same type or of different cell populations. First, we identified and 

isolated the doublets and performed standard postprocessing by dimensional reduction and SNN 

clustering. The identified clusters were then separated into clusters expressing diverse and non-diverse 

cell type marker genes. In our case, we identified the clusters that expressed markers for both 

lymphoid (CD3D) and myeloid (AIF1) cells. To estimate the similarity between connected source- and 

target population, the top-corrected cell pairs and the lymphoid/myeloid doublet clusters were 

merged, followed by PCA analysis. This resulted in the doublet cluster spanning between the source 

and target cell population.  
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